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1. Limit Equilibrium Method (LEM): problem statement 

 

Applications: 

(i) To assess the stability of a given slope (computing the Factor of Safety, F). 

(ii) To perform the back-analysis of a failed slope to 

- study the causes of the collapse; 

- compute the operative shear strength parameters during collapse; 

- propose and design remedial works. 

 

Hypothesis 1: 2D problem. 

The slip surface S delimits the considered body B. 

 
 

Figure 1.1. The limit equilibrium method: outline of stress components at the generic point P of the 

considered slip surface S. 

 

 

At this stage only fully saturated and dry conditions are considered. At any point P of a given slip 

surface S, n and t are the unit vectors perpendicular and parallel to the slip surface (Figure 1.1). The 

following stress components are defined in P: 

n , normal total stress; 

t , shear stress; 

wu , pore water pressure; 

wnn u−=  , normal effective stress. 

 

Resultant forces are: 

dS
S

nnN = 

 
( 1.1 ) 
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( 1.4 ) 

Hypothesis 2: validity of the Mohr-Coulomb failure criterion. 

 

At each point P, the shear stress at failure (shear strength) is given by 

 += tannf c

 

( 1.5 ) 
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where ¢c  is the intercept cohesion and ¢f is the angle of shearing resistance (Figure 1.2). 

Resultant force from the shear resistance along S: 

dS
S

f tTf = 

 
( 1.6 ) 

 

The body B is in limit equilibrium condition when in every point P of S: t = t f
.  

 

If along S, t < t f
, we assume the possibility to bring B into a limit equilibrium condition by reducing 

the available shear strength as follows 

FF

c

F
n

f 






+


==
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( 1.7 ) 

where F is the factor of safety.  

 

The mobilized shear strength parameters are: 

F

c
cmob


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( 1.8 ) 
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( 1.9 ) 

 

Hypothesis 3: F is constant along S. 
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( 1.10 ) 

 

A value of F can be computed for each S; the surface for which F attains the minimum value is called 

the critical slip surface; the corresponding F value is the factor of safety of the slope.  

 

 
Figure 1.2. Available and mobilized shear strength. 

 

 

Remarks 

 

• The LEM does not consider soil displacements prior, during or after slope failure. 

• The LEM does not involve any constitutive law for the behaviour of the involved soil. 

• The way to compute F is different for the various methods. 

• F < 1 is not an admissible condition. 
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2. Stability analysis of a rigid block  

 

The block in Figure 2.1 is separated from the stable mass by a vertical discontinuity (BC). In the 

considered configuration, the discontinuity is filled with water and drainage is allowed at the toe of the 

block (A).   

 
Figure 2.1. Stability analysis of a block. 

 

1U , resultant force of the water pressures acting on the discontinuity; 

2U , resultant force of the water pressures acting on the slip surface. 

 

Equilibrium in the direction parallel to the slip surface: 

 sincos1 WUT +=

 

( 2.1 ) 

Equilibrium in the direction perpendicular to the slip surface: 

 sincos 12 UUWN −−=

 

( 2.2 ) 

 

For a planar slip surface Equation ( 1.10 ) yields 

F
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T
T
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=== 
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( 2.3 ) 

 

Factor of safety: 
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( 2.4 ) 

 

 

Remarks 

 

• For planar slip surfaces, F is computed considering two equations of static equilibrium in the 

perpendicular and parallel directions to the slip surface.  

• Rotational equilibrium equation can be used to compute the position of the force 'N . 

• Water pressures reduce the resultant available shear strength (Tf) and increase the mobilized 

shear strength (T). 

• The distribution of ¢s n does not affect the value of F. 

• Different distributions of the water pressure may apply depending on the configuration 

(geometry of the block and discontinuities) and drainage conditions. 
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3. Infinite slope analysis 

 

Application: extensive slips involving relatively shallow soil covers over much more competent 

materials. The soil cover tends to slide on a plane parallel to the soil surface.  

 

The stability of a slice is considered. 

 
 

Figure 3.1. Infinite slope analysis. 

 

 

iU
 
(resp. 1+iU ) resultant force of the water pressures acting on the right (resp. left) boundary of the 

slice. bU
 
(resp. sU ) resultant force of the water pressures acting on the bottom (resp. top) boundary 

of the slice. 

iZ
 
(resp. 1+


iZ ) resultant force of the effective stresses acting on the right (resp. left) boundary of the 

slice. For symmetry: 0ZZ =+ +1ii . 

 

Equilibrium in the direction parallel to the slip surface: 

( )  cossin 1+−+= ii UUWT

 

( 3.1 ) 

Equilibrium in the direction perpendicular to the slip surface: 

( ) ( )sbii UUUUWN −−−−= +  sincos 1

 

( 3.2 ) 

 

For a planar slip surface Equation ( 1.10 ) yields 

F
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For dry conditions 




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( 3.5 ) 

where  is the unit weight of the soil. 

 

 

The critical depth zcr at which F=1: 

 

 

𝑧𝑐𝑟 =
𝑐′

𝛾 cos 𝛼 (sin 𝛼 − cos 𝛼 tan 𝜙′) )
 

( 3.6 ) 

 

For hydrostatic conditions 
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( 3.7 ) 

where ¢g is the buoyant (submerged) unit weight of the soil. 

 

For seepage parallel to slope 









 tan

tan

cossin


+


=

satsatz

c
F

 

( 3.8 ) 

where gsat is the unit weight of the soil in saturated conditions. 

 

 

Remarks 

 

• Flow condition has a strong effect on the stability of the slope: Equation (3.8) vs Equation 

(3.7). 

• Alternate method for considering water in the stability analysis is to place in equilibrium: (i) 

the buoyant weight of the slice, (ii) the resultant of the effective stress distributions acting 

along the boundary of the slice, (iii) the resultant of the shear stress distributions acting along 

the boundary of the slice, (iv) the seepage force equals the product of volume of the 

considered element (where the water flows) times the unit weight of water times the hydraulic 

gradient (i). The seepage force acts parallel to the flow lines. For seepage parallel to slope 

sin=i . 
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4. LEM for circular slip surfaces 

 

The resultant forces in the case of a circular slip surface are depicted in Figure 4.1. It is shown that the 

computation of F is statically indeterminate for circular slip surfaces.  

 

 

 
 

Figure 4.1. The limit equilibrium method applied for a circular slip surface (Airò Farulla, 2001). 

 

 

Known forces acting on the body B are W and U. The force N  passes through the center O as every 

vector nn   does. The inclination () and the magnitude N   are unknown.  

 

It is convenient to write T  as: 

TTT += c

 

( 4.1 ) 

with 
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
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( 4.3 ) 

where La is the length of the circular arc AB. 

 

The magnitude of cT  is  

F

Lc
T c

c


=

 

( 4.4 ) 

where Lc is the length of the chord AB. The direction of cT  is parallel to the chord AB and has a 

distance from point O equal to: 

c

a
c

L

L
rr =

 

( 4.5 ) 

The magnitude of T  is  

F

N
T





=

tan

 

( 4.6 ) 
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The direction of cT  is perpendicular to N  and its distance (r) from point O is unknown. 

 

Finally four unknowns are needed ( N  ,, r, F) while 3 equilibrium equations are available in a 2D 

problem (two equations of equilibrium in two orthogonal directions + one equation of rotational 

equilibrium).  

 

 

Remarks 

 

• The undetermined computation of F would be solved if the distribution of normal effective 

stresses ( ¢s n
) along La would be known, for example through a stress:strain analysis. However 

the LME does not make any assumption on the constitutive behaviour of the involved 

materials. 

• In the Friction Circle Method it is assumed (arbitrarily) that r=rc. The computation of F 

becomes then possible using the three equilibrium conditions.  
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5. The method of slices 

 

The method of slices is an application of the LEM. It can be used to compute F for an arbitrary shape 

of the slip surface S. The body B can be composed of different soils with different mechanical 

properties. In the method of slices, the body B is divided into n slices by n-1 (conventionally) vertical 

lines. Forces acting on a single slice are depicted in Figure 5.1:  

iW , force weight of the slice i; 

biU , resultant force of the pore water pressures acting on the bottom of the slice i; 

iU
 
and 1−iU , resultant forces of the pore water pressures acting on the left and right sides of the slice 

i; 

iE  and 1−

iE , resultant forces of the effective stresses normal to the left and right sides of the slice i; 

these forces act at a distance hi and hi-1 from the bottom of the slice. 

iX  and 1−iX , resultant forces of the shear stresses acting on the left and right sides of the slice i; 

iN , resultant forces of the effective stresses normal to the bottom of the slice i; if the slice is 

sufficiently small in width, iN  can be considered as applied at the center of the bottom of the slice; 

iT , resultant of the shear stress acting on the bottom of the slice i; for an appropriate subdivision in 

slices of the body B, the arc at the bottom of the slice can be approximated with the chord; in this case 

the direction and position of iT  is known, since the force is applied directly along the base of the slice.  

 
Figure 5.1. The method of slices (Airò Farulla, 2001). 

 

 

A total of 4n equations are available for computing F:  

• three equations of equilibrium for each slice:    3 x n; 

• relationship between the magnitudes of iN  and iT  through F:  n. 

 

There are 5n-2 unknowns for the computation of F: 

• magnitude and position of the inter-slice forces ( iE  , hi, iX ):  3 x (n-1); 

• magnitude of the forces acting on the bottom of the slices ( iN o iT ,): 2 x n; 

• the factor of safety (F):       1. 
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A total of n-2 additional equations are needed to compute F. Several methods exist which propose 

different choices of the additional conditions to compute F. The methods can be distinguished in 

• rigorous:  the additional n-2 conditions are selected in order to respect all the 3n equations of 

equilibrium;  

• non-rigorous: as a result of the additional conditions (e.g. some forces are neglected or their 

direction is fixed arbitrarily) some of the equations of equilibrium are not used neither 

verified. 
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6. The method of slices for circular slip surfaces 

 

When the slip surface is circular, it is convenient to compute F considering the rotational equilibrium 

equation of the entire body B with respect to the center O. As depicted in Figure 6.1, the moments of 

forces biU and iN , are equal to zero. The moments of forces iE  and iX  are not considered since those 

are internal forces for the body B. From the rotational equilibrium F is computed as:  

( )





 +

==
ii

ii

ii

i

W

Nlc

rW

rT
F





 sin

tan

sin
 

( 6.1 ) 

When using this equation, unknown terms exist only in the numerator of the fraction. On the other 

hand, unknowns would appear on the numerator and denominator if F would be computed through the 

equation of equilibrium in the vertical or horizontal direction; in this sense, the effects of the assumed 

additional conditions on the computation of F is less significant when the above equation is used for a 

circular slip surface. 

The most common non-rigorous methods, which use Equation 6.1, are the Fellenius’ method the 

Bishop’s simplified method, which are discussed in the next sections. 

 

 
Figure 6.1. The method of slices for a circular slip surface (Airò Farulla, 2001). 
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7. The Fellenius’ method 

 

The Fellenius’ method is also called the ordinary method of slices or the Swedish method. In order to 

compute iN   the equilibrium of each slice is considered in the direction perpendicular to base of the 

slice: 

( ) ( ) iiiiiibiiii EEXXUWN  sincoscos 11 −−−−−= −−

 

( 7.1 ) 

 

The additional conditions regard the inclination of the inter-slice forces, which are assumed parallel to 

the base of the slice for each slice: 

biiii UWN −= cos

 

( 7.2 ) 

 

Equations 6.1 writes 

( ) 


 −+

=
ii

biiii

W

UWlc
F





sin

tancos

 

( 7.3 ) 

 

 

Remarks 

 

• The computation of F is straightforward since it uses a linear equation.  

• The method has been proven to be poorly accurate, especially for deep slip surfaces. 
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8. The Bishop’s simplified method 

 

Bishop’s simplified method is a non-rigorous method of slices for circular slip surfaces. The method 

uses the equation of rotational equilibrium of the entire body B (Equation 6.1) to compute F.  

 

The magnitude of the resultant force of the effective stresses normal to the base of each slice ( iN  ) is 

computed considering the equilibrium of the slice in the vertical direction: 

 

( )

F

F

lc
UXXW

N
i

i

ii
ibiiii

i 






+


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=
−

tansin
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( 8.1 ) 

or 

( )

i
m

F
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UXXW

N

ii
biiii

i






sin
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
−−−−

=
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( 8.2 ) 

with 

F
m i

ii





+=

tansin
cos

 

( 8.3 ) 

 

Hypothesis: It is assumed that for each slice the tangential inter-slice forces have equal magnitude and 

opposite direction ( ) 01 =− −ii XX . 

 

Equation 5.1 becomes 

( ) 



 −+

=
ii

ibiii

W

m
UWbc

F i






sin

1
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( 8.4 ) 

 

Remarks 

 

• An iterative procedure is required in order to compute F. 

• For circular slip surfaces, the Bishop’s simplified method provides values of F similar to the 

ones computed with rigorous methods. 
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9. The General Limit Equilibrium Method 

 

Several rigorous LEMs have been proposed over the last decades. They all introduce assumptions so 

that the computation of F is carried out ensuring, at the same time, the respect of all the equilibrium 

equations for all the slices. In this course only the GLE method (Fredlund and Kranhn, 1977) will be 

introduced. Several rigorous and non-rigorous methods can be seen as particular applications of the 

GLE method. 

 

Figure 9.1 depicts a non-circular slip surface. Along with the forces introduced in the previous 

sections, the following actions are also considered: 

rA  
(resp. sA ) resultant force of the water pressures acting on the right (resp. left) vertical boundary 

of the landslide body; 

iQ
 
(resp. iP ) horizontal (resp. vertical) force acting on the surface of the slice i; 

ikW , horizontal mass force acting on the slice i.  

 

 
Figure 9.1. The GLE method (Airò Farulla, 2001). 

 

The magnitude of iN   is computed considering the equilibrium of the slice in the vertical direction: 

( )
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( 9.1 ) 

Equilibrium in the horizontal direction for the slice i: 

( ) ( ) i
ii

ibiiiii
F

Nlc
UNQkWEE 


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+
=++−+−−

 

( 9.2 ) 

Equilibrium in the horizontal direction for the entire body gives: 
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( 9.3 ) 
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where F is named Ff since the equilibrium of forces has been used. 

 

The rotational equilibrium with respect to an arbitrary point O gives the following expression for the 

factor of safety: 

( )

( ) ( ) ibillrriiiiiiii

iii

m
fUNaAaAdQxPekWxW

rNlc
F

 


+−−+−++

+
=

tan

 

( 9.4 ) 

 

The last two equations have n unknowns (F, Xi). The problem is solved introducing n-1 equations of 

the type: 

)()()( xfxExX =

 

( 9.5 ) 

in which the inclinations of the inter-slice forces are fixed through a selected function f(x) and an 

additional unknown .  

 

Several LEMs can be seen as particular applications of the GLE methods; in particular the Bishop’s 

simplified method can be obtained imposing Xi=0 and =0. Of large application is the Morgenstern 

and Price method (Morgenstern and Price, 1965), which uses Equation (9.5) for a division of the body 

in slices with an infinitesimal width. 

 

Remarks 

 

• An iterative procedure is required in order to compute F. 

• The computations of Ff and Fm allow to highlight the advantage of using the rotational 

equilibrium in the method of slices. 

 

 

 


